Marketing91

  • HOME
  • Categories
    • Marketing Management
      • Marketing basics
      • Marketing Articles
      • Careers in Marketing
      • Market Research
      • Retail Marketing
      • Services Marketing
    • Strategy
      • Marketing Strategies
    • Management
    • Branding
    • Small Business
    • Sales & Selling
    • Advertising
  • Online Marketing
    • Blogging
    • Social Media Marketing
    • Search Engine Optimization
    • Internet Marketing
    • Ecommerce
  • Brands
    • Marketing Mix of all Brands
    • SWOT of Brands
    • Brand Competitors
    • Marketing Strategy of Brands
    • Business Models of Brands
  • Videos
Home » Management articles » Top 5 Characteristics of Big Data

Top 5 Characteristics of Big Data

January 22, 2020 By Hitesh Bhasin Tagged With: Management articles

In the past few years, big data has become an important term in the field of computer science. One gets the impression of a “huge amount of data” from the term “Big data.” It is not wrong to associate big data with massive amounts of data, but it leaves an incomplete picture of big data.

Big data deals with many challenges, along with dealing with an enormous amount of data. The challenges related to big data are

Characteristics of Big data
  1. Systematic extraction of information from huge data.
  2. Methods to analyze the vast data.
  3. Dealing with different data sets to get useful information.

The big data is a term used for referring to different types of technologies to extricate useful and meaningful information from a heap of massive data.  Each set of extensive data has its unique challenges associated with it to capture and manage the data.

The traditional data, like relational data, was usually in structured or in semi-structured form. Therefore, it was easy to extract useful or desired information from it. However, big data is collected from different sources and in various sizes. As a result of that data can be in a structured, unstructured, and semi-structured format. Therefore, different types of technologies are used to harness the huge amount of data to obtain useful information from it.

The amount of big data is increasing every single because of every small activity taking place on the Internet. All the activities from making a 10 seconds video call with your mother to adding an item in your cart on an e-commerce website add to the amount of big data. A unique processing process is required to collect data produced by every device connected to the Internet.

Moreover, it also requires special algorithms to analyze and obtain useful information from non-uniform data. In the present times of such advanced technologies, companies are still struggling with dealing with huge amounts of data every day. Therefore, big data can be referred to as the data which cannot be managed and analyzed with traditional tools and techniques used for the analysis of structured and semi-structured data.

There is a phrase famous on the Internet, which is “Data is new fuel.” This phrase is quite correct in the present time. Because a large number of activities related to a business are performed on the Internet, and a large amount of structured and unstructured data is collected every day from these activities. This data can prove to be very beneficial for the businesses if they know how to obtain useful information from the raw data.

Also Read  What are Essential Skills? 8 Essential Skills you should know

There are several examples of businesses that are making a million bucks by making the right use of big data. Let us take the case of the company, which has built its empire merely by making the proper use of massive data. According to the Seotribunal website, Google receives approximately 63,000 searches per second every day. Google considers over 200 factors before answering a query searched.

Pretty Impressive, Uhhh? Have you ever thought about how Google makes it possible to answers your every queries within seconds when you are unable to find your sock in 200sqmt room? Similarly, big data plays a vital role in several sectors, such as retail, media, technology, social media, financial industry, and travel. Therefore, it is right to say that big data is a new field that consists of challenges like sorting, managing, analysis, new tools and technology to deal with massive amounts of raw data.

In this article, I will talk about the different characteristics of big data or 5 V’s of big data that you need to know to establish an understanding of the big data.

Table of Contents

  • Characteristics of Big data
  • 1. Volume
  • 2. Velocity
  • 3. Variety
  • 4. Value
  • 5. Veracity
    • Related posts:

Characteristics of Big data

Characteristics of Big data

1. Volume

Volume is the most important characteristic of big data. It is the enormous size of data, which makes it big data. The meaning of the volume of data is the huge amount of data generated every single second platform. For example, According to a digital website, approximately 95 million photos are uploaded on Instagram, a social media platform every day. And another popular social media platform Facebook generates four new petabytes of data a day.

These organizations can’t manage and handle such a huge amount of data using traditional data management tools like relational database technology. Therefore, data is stored at different locations with the help of distribution systems and is brought together with the help of software.

The figures that I have mentioned above are increasing with every passing second, and engineers are required to come up with new ideas and methods to deal with such huge data.

Also Read  25 Types of recruitment

However, until the present time, when I am writing this article, there has not been the invention of a technique that can provide a permanent solution to the problem. Soon, the amount of data is going to exceed with the inclusion of an increasing number of contributors to generate new data.

For example, in addition to human beings, because of the Internet of Things, there will be sensors all over the world, generating huge amounts of data every second. This is one of the most critical challenges waiting for digital entrepreneurs.

2. Velocity

Velocity

The second V of big data is velocity. Velocity refers to the speed at which data is generated by different sources every second of a day. In addition to the generation of data, velocity also includes the collection and analysis of data. The speed in accessing the data plays an essential role in big data. Because many transactions are taking place in real-time.

For example, a person paying a bill using his credit card at a restaurant, a person playing online games, or a person shopping on an e-commerce website. To be able to provide real-time facilities to users, businesses are required to analyse the transaction and authorized it at light speed.

In addition to this, there is enormous data generated in the form of emails, messages, photos, and videos that are required to be collected, analyzed and stored for users. Big data technologies analyze the data as soon as it is generated without adding it to databases.

3. Variety

Variety

The third v of big data stands for variety. Variety means the different types of data generated. A variety of data is an important characteristic of big data. Big data deals with different, complex, and unstructured nature of data.

A few years ago, the data generated was in a structured form such as names, addresses, mobile numbers, etc. After the digitization, a significant part of the data generated is in an unstructured form. For example, photos, video clips, text messages, social media posts.

Old traditional database techniques are not sufficient to deal with such a variety of data. Therefore, big data techniques are designed to manage and analyze the type of data generated by different sources.

Also Read  The Meaning Of Professionalism And How To Improve It

4. Value

Value

Another important characteristic of big data is the value of the information extracted from the data. No matter how much data you collect but if you can’t use it to enhance your business or can’t use it for monetary benefits, then it is useless, and all your efforts in extracting the data is also meaningless. The right information extracted from the social media platform can also help you win the election. You know what I mean.

If you have a considerable amount of data, then it is crucial to determine for what purpose do you want to use the data and extract exactly that information from the data.

For example, have you noticed you see advertisements of different products that you have just viewed on an e-commerce website or you have added to your cart of the website? Based on this information, companies design ads uniquely curated for you that make you bring back to the site to make your transaction complete.

5. Veracity

Veracity

Let us talk about the last characteristic of big data, which is veracity. Veracity means the trustworthiness of the data. If the data that you are using is not accurate, then you will not get the desired results as you want.

Your pile of data will be of no use if it is not accurate. For example, sometimes, companies buy data to run their marketing campaigns. If they want to run a campaign in India, then having the contact list of people in the USA will be useless.

Therefore, make sure that the data you are using is accurate and obtained from a reliable source.

Related posts:

Barriers to EntryBarriers To Entry: Meaning, Types, Examples Employee Background Check: Concept, Importance, Steps & Advantages Business Risk: Definition, Types, Importance and How to Minimize it 10 Ways To Be SuccessfulHow to be Successful? 10 Ways To Be Successful Performance Appraisal MethodsTop 18 Performance Appraisal Methods for Best Results Secondary DataSecondary Data – Characteristics, Advantages and Examples Definition of Entrepreneur - EntrepreneurshipDefinition Of Entrepreneur – Define Entrepreneurship 10 Ways To Be ConfidentHow to be Confident? 10 Ways To Be Confident Self AssessmentSelf Appraisal – 10 Key Steps To Write Performs Review And Explained With Examples Data AnalysisWhat is Data Analysis? Techniques, Types, and Steps Explained
Also Read  Mass Production - Definition, Meaning, Understanding, Advantages

All Knowledge Banks (Hub Pages)

  1. Marketing Hub
  2. Management Hub
  3. Marketing Strategy
  4. Advertising Hub
  5. Branding Hub
  6. Market Research
  7. Small Business Marketing
  8. Sales and Selling
  9. Marketing Careers
  10. Customer Management
  11. Top 10 Lists
  1. Internet Marketing
  2. Blogging
  3. Search Engine optimization
  4. E-commerce
  5. Facebook Marketing
  6. Social Media Marketing
  7. Business Model of Brands
  8. Marketing Mix of Brands
  9. Brand Competitors
  10. Strategy of Brands
  11. SWOT of Brands
GET DAILY MARKETING UPDATES

About Hitesh Bhasin

I love writing about the latest in marketing & advertising. I am a serial entrepreneur & I created Marketing91 because i wanted my readers to stay ahead in this hectic business world. You can follow me on Facebook. Let's stay in touch :)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts
  • What is Benefits Administration? Definition and Steps
  • What is coaching? Different coaching styles
  • What is Corporate Training? Types and benefits
Advertisement

Marketing91

MORE INFO

  • About Marketing91
  • Privacy Policy
  • Cookie Policy
  • Disclaimer
  • Terms of Use
  • Advertise
  • Contact us
  • Sitemap
  • ISO 9001:2015 Certified

LEARN WITH US

  • Course on Market Segmentation
  • Course on Marketing Strategory Models

WE WRITE ON

  • Marketing
  • Small Business
  • Management
  • Internet Marketing
[email protected]

Copyright © 2020 Marketing91 All Rights Reserved